特黄三级爱爱视频|国产1区2区强奸|舌L子伦熟妇aV|日韩美腿激情一区|6月丁香综合久久|一级毛片免费试看|在线黄色电影免费|国产主播自拍一区|99精品热爱视频|亚洲黄色先锋一区

知識圖譜構(gòu)建研究綜述

  • 打印
  • 收藏
收藏成功


打開文本圖片集

中圖分類號:TP391 文獻標識碼:A 文章編號:2096-4706(2025)08-0117-10

Abstract:As a structured semantic knowledge base,the Knowledge Graph plays a key role in many fields such as informationretrval,intellgntquestionasweringandcommendationsystems.Thisapeviews tetheecorecopoents of KnowledgeGraphconstruction,informationextraction,knowledgefusion,andknowledgerasoning.Informationetraction technologyhasdevelopedfromrule-basedmethods toMachineLearing model,andthentoDepLeaingmodel.Itiscurently evolvingtowardsajoint EntityRelationshipExtractionmodel thatreduces erorpropagationandimprovesaccuracy.Inthepart ofknowledgefusion,thestrategiesofentitylinkingandkowledge mergingarediscussed,andtheproblemofentityrecogition is solved byentitydisambiguationand entity alignment.The sectionon knowledge reasoning analyzes the reasoning methods basedonrules,epresentationlearningandDeepLeaming,anditsaplcationinnewknowledge discoveryanderorinformation corection.Finallytehallengesinteonstuctionprocessaepontedout,andsuggestiosforutureesearchditiosare proposed to promote the development of knowledge graph research and application.

Keywords: Knowledge Graph; information extraction; knowledge fusion; knowledge reasoning; Deep Learning

0 引言

20世紀90年代,計算機網(wǎng)絡(luò)在世界各地得到普及,網(wǎng)絡(luò)信息資源日漸豐富,信息數(shù)據(jù)呈現(xiàn)規(guī)模海量、類型繁多和快速增長等特征。(剩余24060字)

目錄
monitor