基于TimeGAN的軌道交通LTE-M故障預測研究

打開文本圖片集
中圖分類號:TP391 文獻標識碼:A 文章編號:2096-4706(2025)08-0010-06
Abstract:The Long TermEvolution of Metro (LTE-M) network fault prediction datasetof rail transit has the problems ofunbalancedsamplesandsmallamountofsampledatawhichimpacttheacuracyoffault prediction.Inordertosolvethe above problems,this paper proposes aresearch methodofLTE-Mfault predictionofrail transitbased onconditionalTime-series Generative Adversarial Networks (TimeGAN).Bydefiningdynamic autoencoderandstatic autoencoderinTimeGANmodel,this method furtherexploresthedynamicandstaticcharacteristicsofLT-Mfaultdataofrailtransit,andintroducesGELUactivation functionnthepotentialspaceofgeneratoranddiscriminatortoaceleratemodelconvergenceandgeneratesyntheticdatacloser toreal data,thusefectivelyalleviating the problemofunbalancedfaultdatasetandsmalldatavoume.Theexperimentalresults showthatwhenthedatasynthesizedbytheTimeGANmodelisusedforfaultpredictiontraining,itcanproducebeterediction results than the original data.
Keywords:rail transitLTE-M;fault prediction;time-series;TimeGAN
0 引言
隨著新一代移動通信的飛速發(fā)展,軌道交通通信基礎設施規(guī)模也迅速擴展,LTE-M網絡作為軌道交通網絡關鍵組成部分,其復雜性也隨之增加。(剩余7847字)