基于深度學(xué)習(xí)的網(wǎng)頁內(nèi)容解析方法

打開文本圖片集
中圖分類號:TP391;TP301.6;TP311.1 文獻(xiàn)標(biāo)識碼:A 文章編號:2096-4706(2025)08-0106-06
Abstract: Inorder to extract valuable information from Web pages eficientlyand accurately,this paper proposes a Web content parsing methodbasedonDeep Learning.This methodaims to extracttext information fromcomplex HyperText MarkupLanguage(HTML).This methodcombines the feature extractionabilityofDeepLeaming,NaturalLanguageProcessing technologyandlayoutinformationinHMLdocumentstoconstructaMulti-LayerNeuralNetworkmodel,soastoealizete recognitionof Webcontent.The experimentalresultsshowthatcompared withthe traditional Webcontentextraction method based on text density, this method has obvious advantages in accuracy,adaptability and robustness.
Keywords:Web content parsing;DeepLearning; Neural Network; adaptability
0 引言
隨著互聯(lián)網(wǎng)的發(fā)展,網(wǎng)頁的功能、樣式結(jié)構(gòu)變得越來越復(fù)雜。(剩余6748字)