等指標(biāo)上顯著優(yōu)于其他模型。該模型有效識(shí)別潛在的異常數(shù)據(jù),為地震風(fēng)險(xiǎn)管理與預(yù)警提供了可靠基礎(chǔ),研究為地震前兆數(shù)據(jù)分析提供了新思路。-龍?jiān)雌诳W(wǎng)" />

特黄三级爱爱视频|国产1区2区强奸|舌L子伦熟妇aV|日韩美腿激情一区|6月丁香综合久久|一级毛片免费试看|在线黄色电影免费|国产主播自拍一区|99精品热爱视频|亚洲黄色先锋一区

基于CNN-LSTM-CBAM模型的地震前兆重力異常檢測研究

  • 打印
  • 收藏
收藏成功


打開文本圖片集

中圖分類號:TP183;TP39;P315. 7 2 + 6 文獻(xiàn)標(biāo)識(shí)碼:A

文章編號:2096-4706(2025)08-0041-05

Abstract: This research proposes an anomaly detection method in earthquake precursor gravity data based on the CNNLSTM-CBAMmodel.The anomalydetection inearthquake precursor gravitydata is crucial for improving the timelinessof earthquakepredictions.Itextracts spatial features ofthegravitydata using CNN,anduses theLSTMtocapture long-term dependencyrelationships inthe time series.The CBAMisintroduced toenhance the model's abilityto focusonimportant features,thereby improving anomaly detection performance.Experimental comparisons with the anomaly detection methods suchas AutoEncoder,CNN,LST,andCNN-LSTmethodsshowthattheproposedmodelinthispaperoutperformsotrsin metrics such as MAE,MSE,RMSE,and .This model effectively identifies potential and abnormal dataand providesa reliable foundation forearthquakeriskmanagementandearly waming.Thisresearchofersnewinsights into theanalysisofearthquake precursor data.

Keywords: earthquake precursor anomaly; gravity data; time series; LSTM; Atention Mechanism

0 引言

在印度板塊與歐亞板塊相互作用及太平洋板塊影響下,中國是板塊內(nèi)地震活動(dòng)最強(qiáng)烈、頻率最高的地區(qū)之一{I]。(剩余6966字)

目錄
monitor