基于改進Y0L0v11的水果成熟度檢測

打開文本圖片集
中圖分類號:TP3191.4;TP183 文獻標識碼:A文章編號:2096-4706(2025)08-0034-07
Abstract:Aimingat theexisting problems of insufficient accuracy,the difficultyof identificationundercomplex backgrounds,ndthebvious limitationsof traditionalmethods infeatureextractioninfruitripenessdetection,afruitripenes detection algorithm (AGLU-YOLOv11) basedon improved YOLOv1 is proposed,to meet the demands for effcient data and reliable colection in fruit ripeness detection.AGLU-YOLOv11 designs the C3k2_AddBlock_CGLU module byoptimizing the C3k2 module in the YOLOv1l backbone network and integrating CATM(Conv Additive Self-Attention) and CGLU (Convolutional Gated Liear Unit),and significantlyenhances feature extraction capabilityand adaptabilityof multi-variety andmulti-stageripenessfruits.Atthesame time,theAFCAAtention Mechanism is introduced inthefeature fusion stage to strengthen global feature expresionand adaptability tocomplex backgrounds,andachieve eficient fruit quality detection andlabeling.Experimental results showthat AGLU-YOLOv1lperforsbeterin precision,robustnessand multi-saleobject adaptability than other detection models inPrecision,Recall, mAP @ 0 . 5 and 1 n A P@ 0 . 5:0 . 9 5 indicators,and can better meet the demands for identifying fruit ripeness.
Keywords:YOLO;ObjectDetection;CGLU;CATM; fruit ripenessdetection
0 引言
社會經(jīng)濟的飛速發(fā)展下,人們的生活水平顯著提高,水果作為人類膳食結構中的重要組成部分,不僅為人體提供豐富的維生素、礦物質(zhì)和膳食纖維,還在促進免疫力和預防慢性疾病中發(fā)揮著重要作用[]。(剩余9445字)