基于條件擴(kuò)散模型的未測量流域徑流預(yù)測方法

打開文本圖片集
中圖分類號:TP391.4;TP183 文獻(xiàn)標(biāo)識碼:A 文章編號:2096-4706(2025)08-0071-07
Abstract: Deep Learning becomes apowerful tool for runoff prediction,but in ungauged basins,the lack of flow observation data makes model trainingand prediction usuallyrequiretheapproachof Transfer Learning.However,thetarget basinoftendoesnothaveenoughdataforfie-tuning,whichmakes itdiffculttocalibratethemodelparameters.Therefore, this paper proposes anungauged basins runof prediction methodbasedonconditional diffusion model.The method includesa forwardnoisingprocessandareversedenoisingprocessThedenoisingmodelis trainedinthesourebasinandthenthedatais recoveredfromthenoiseintetargetbasinasthepredictionresultInadition,thedenoisingprocesisguidedbytheconditional datancludingmeteorologicaldriversandhistoricalrunoffndtheTrasformerlayerisintroducedintothedenoisingmodelto capture the dependenceof ime andfeatures.Throughthecross-validation experimentontheCAMELS-US dataset,theresults show that the method has superiority.
Keywords: runoff prediction; ungauged basins; Transfer Learning; conditional diffusion model; CAMELS-US
0 引言
徑流量能夠反映特定流域內(nèi)水文、王壤和地質(zhì)特征,是綜合反映流域內(nèi)自然條件和人類活動的重要指標(biāo)。(剩余7609字)