基于機(jī)器學(xué)習(xí)的風(fēng)光功率預(yù)測系統(tǒng)研究

打開文本圖片集
中圖分類號(hào):TP181 文獻(xiàn)標(biāo)志碼:A 文章編號(hào):2095-2945(2025)13-0113-05
Abstract:Withtherapiddevelopmentofrenewableenergytechnologies,addressingtheinherentstochasticity,fluctuations, andintermitencyofwindandsolarpowergenerationthroughadvancedartificialinteligencehasbecomecriticalforindustry advanceent.Thisstudyproposesasmaitintegrated,andonestopforecastingsystemarchitecturecomprisingtwocoreodules: amachinelearningalgorithmmanagementplatformformodeldevelopmentandoptimization,andaforecastingsupportservice platformforoperationaldecision-making.Thesystemprovidesend-to-endtechnicalsupportspanningmodeltraining,algorithm selection,scenario-specificservices,energytradingassistance,andbenefitalocationmechanisms.Byenablingnationwidesharing ofdataresources,optimizedalgorithms,andcloudplatforms,thisframeworkofersanovelsolutiontoenhanceprediction accuracy,timeliness,and grid integration efficiency for hybrid renewable energy systems.
Keywords: machine learning; wind power; solar power; power forecasting; system
近年來,隨著全球氣候變化的日益嚴(yán)峻,人們對(duì)減少二氧化碳排放的需求不斷增長,截至2024年底,我國以風(fēng)電、太陽能發(fā)電為主的新能源發(fā)電裝機(jī)規(guī)模達(dá)到 ,首次超過火電裝機(jī)規(guī)模。(剩余6281字)