”框架網(wǎng)絡(luò)及“Resnet50"編碼器解碼器網(wǎng)絡(luò)訓(xùn)練的圖像分割模型可以有效地提取野外露頭照片的裂隙結(jié)構(gòu)。-龍?jiān)雌诳W(wǎng)" />

特黄三级爱爱视频|国产1区2区强奸|舌L子伦熟妇aV|日韩美腿激情一区|6月丁香综合久久|一级毛片免费试看|在线黄色电影免费|国产主播自拍一区|99精品热爱视频|亚洲黄色先锋一区

基于深度學(xué)習(xí)的裂隙智能提取研究

  • 打印
  • 收藏
收藏成功


打開文本圖片集

中圖分類號(hào):TP18 文獻(xiàn)標(biāo)志碼:A 文章編號(hào):2095-2945(2025)13-0009-05

Abstract:WiththerapiddevelopmentofChina’seconomicconstruction,engineeringconstructionismovinginahigher, deperandbroaderdirection.Inordertoensurethesafetyof projectconstruction,itisnecessarytoidentifytheenginering geologicalconditionsofthesitebeforeprojectconstruction.Asanimportantpartofrockmassstructure,fractureshavean importantimpactonengineeringgeologicalconditions.Therefore,extractingthestructureofcracksisveryimportantfor engineeringconstruction.Traditionalcrack structureextractionmethodsaretime-consumingandlabor-intensive,andhavepoor operability;theacuracyofcrackextractionmethodsusingtraditionalcomputertechologycannotmeetengineeringneedsandare poorinpracticality;however,therearefewresearchonusingdeeplearningtechnologytoextractfractures.Bystudyingthedeep learningnetworkoftheencoder-decoderarchitecture,thispaperdeterminesthattheimagesegmentationmodeltrainedbythe "U-Net++"frameworknetworkandthe"Resnet5O"encoder-decodernetworkcanefectivelyextractthefisurestructureoffield outcrop photos.

Keywords: crack extraction; image segmentation; deep learning; crack structure; extraction method

隨著我國(guó)經(jīng)濟(jì)建設(shè)的高速發(fā)展,房屋建筑越來(lái)越高,地基基礎(chǔ)越來(lái)越深,穿山隧道越來(lái)越長(zhǎng),水利水電工程越來(lái)越龐大,相應(yīng)地,對(duì)于工程建設(shè)過(guò)程中的工程地質(zhì)條件要求也越來(lái)越高,對(duì)工程地質(zhì)信息的掌握也要越來(lái)越精確。(剩余6462字)

目錄
monitor