基于深度學(xué)習(xí)的裂隙智能提取研究

打開文本圖片集
中圖分類號(hào):TP18 文獻(xiàn)標(biāo)志碼:A 文章編號(hào):2095-2945(2025)13-0009-05
Abstract:WiththerapiddevelopmentofChina’seconomicconstruction,engineeringconstructionismovinginahigher, deperandbroaderdirection.Inordertoensurethesafetyof projectconstruction,itisnecessarytoidentifytheenginering geologicalconditionsofthesitebeforeprojectconstruction.Asanimportantpartofrockmassstructure,fractureshavean importantimpactonengineeringgeologicalconditions.Therefore,extractingthestructureofcracksisveryimportantfor engineeringconstruction.Traditionalcrack structureextractionmethodsaretime-consumingandlabor-intensive,andhavepoor operability;theacuracyofcrackextractionmethodsusingtraditionalcomputertechologycannotmeetengineeringneedsandare poorinpracticality;however,therearefewresearchonusingdeeplearningtechnologytoextractfractures.Bystudyingthedeep learningnetworkoftheencoder-decoderarchitecture,thispaperdeterminesthattheimagesegmentationmodeltrainedbythe "U-Net++"frameworknetworkandthe"Resnet5O"encoder-decodernetworkcanefectivelyextractthefisurestructureoffield outcrop photos.
Keywords: crack extraction; image segmentation; deep learning; crack structure; extraction method
隨著我國(guó)經(jīng)濟(jì)建設(shè)的高速發(fā)展,房屋建筑越來(lái)越高,地基基礎(chǔ)越來(lái)越深,穿山隧道越來(lái)越長(zhǎng),水利水電工程越來(lái)越龐大,相應(yīng)地,對(duì)于工程建設(shè)過(guò)程中的工程地質(zhì)條件要求也越來(lái)越高,對(duì)工程地質(zhì)信息的掌握也要越來(lái)越精確。(剩余6462字)