基于深度學(xué)習(xí)的車輛部件半自動標注研究

打開文本圖片集
中圖分類號:TP391.4 文獻標志碼:A 文章編號:2095-2945(2025)13-0014-07
Abstract:Intheraofartifialinteligene,intelligentlossassssmenttechnologyusingdeplearningisageneraltrendin thedevelopmentandtransformationofautomobileinsurance.Itcangreatlyreduce thecostofmanuallossassessmentand improvetheefciencyoflossassessment;deeplearningmodelsrequirealargenumberofannotatedsamplesfortraining,but currentlythereisnopublicdatasetonvehicleinjurytypesandcomponents.Thispaperproposesasemi-automaticlabeling methodforvehicleparts,first,amodelthatcanberoughlylabeledistrainedthroughaseddataset,andthenthemodelis usedforautomaticlabelingofvehicleparts;onthebasisofautomaticlabeling,asmallnumberofmanualcorectionsaremade, andthenexpandedtothedataset,andthemodelisre-trainedtoimprovetheaccuracyofre-labeling.Theexperimentalresults showthatthesemi-automaticlabelingmethodcanefectivelyimprovethelabelingefciencyofvehiclepartsandreducethe labor and time costs required for data labeling work.
Keywords: deep learning; image segmentation; semi-automatic annotation; vehicle parts; data
據(jù)公安部統(tǒng)計,截至2024年底,我國汽車保有量突破4.5億輛。(剩余9277字)