基于深度學(xué)習(xí)的配電網(wǎng)故障智能辨識(shí)模型研究

打開文本圖片集
中圖分類號(hào):TP18 文獻(xiàn)標(biāo)志碼:A 文章編號(hào):2095-2945(2025)13-0024-05
Abstract:With theadvancementof powersystem technologyandequipmentupgrades,theacumulationof poweroperation datahasbecomemoreandmoreregular.Duetothelimitationsoftradionalneuralnetworks,faultsamplescannotbeidetified well.Tothisnd,anintellgentidentificationmodelfordistrbutionnetworkfultsbasedoneeplaingisproposdistthe neuralnetworkarchitectureisdetermined;thenthemodelistrainedbycombiningthecorrspondingparameteroptimization algorithm;finally,thedeeplearningmodelfordistributionnetworkfaultidenificationcanbeobtained.Throughsimulation verification, the verification results prove the effectiveness of the proposed method.
Keyword:neuralnetwork;distributionnetwork;deeplearningmodel;parameteroptimizationalgorithm;inteligentfault identification
在配電網(wǎng)故障研究領(lǐng)域,研究?jī)?nèi)容通常包括故障預(yù)測(cè)、故障檢測(cè)以及系統(tǒng)恢復(fù)與重構(gòu)等方面。(剩余6551字)