基于LSTM與EMD結(jié)合的電廠循環(huán)冷卻水系統(tǒng)運(yùn)行狀態(tài)預(yù)測(cè)研究

打開(kāi)文本圖片集
關(guān)鍵詞:循環(huán)冷卻水系統(tǒng);運(yùn)行狀態(tài)預(yù)測(cè);遺傳算法中圖分類號(hào):TM621 文獻(xiàn)標(biāo)志碼:ADOI:10.19968/j.cnki.hnkj.1003-5168.2025.14.002文章編號(hào):1003-5168(2025)14-0013-04
Research on Operation Status Prediction of the Circulating Cooling WaterSystem in PowerPlantsBased onthe Combinationof LSTM and EMD
LIU Feiyu (Intelligent Control Industry College,Henan Chemical Technician College,Kaifeng 4750Oo,China)
Abstract: [Purposes] To address the insufficient prediction accuracy of the operation status in power plant circulating cooling water system,a prediction method combining Genetic Algorithm-optimized Bidirectional Long Short-Term Memory neural networks (GA-BiLSTM) and Empirical Mode Decomposition (EMD)is proposed.[Methods]EMD is employed to decompose the original data into multiple Intrinsic Mode Function (IMF)components,thereby reducing data complexity.With the help of the Genetic Algorithm(GA),the hyperparameters of the Bidirectional Long Short-Term Memory neural network (BiLSTM) are optimized to improve the performance of the model. The decomposed IMF components are then individuallyfed into theoptimized GA-BiLSTM model for prediction,with final resultsobtained through reconstruction.[Findings] Experimental results demonstrate that all prediction error metrics of this model remain at low levels,with a 55% improvement in prediction accuracy compared to conventional models.[Conclusions] The prediction method based on the combination of LSTMand EMD can provide strong assurance for stable operation of the circulating cooling water system in power plants.
Keywords: circulating cooling water system; operation status prediction; Genetic Algorithm
0 引言
電廠循環(huán)冷卻水系統(tǒng)在工業(yè)生產(chǎn)中占據(jù)關(guān)鍵地位,其穩(wěn)定運(yùn)行對(duì)保障設(shè)備正常運(yùn)轉(zhuǎn)、提高生產(chǎn)效率和降低能耗具有重要意義。(剩余4538字)