特黄三级爱爱视频|国产1区2区强奸|舌L子伦熟妇aV|日韩美腿激情一区|6月丁香综合久久|一级毛片免费试看|在线黄色电影免费|国产主播自拍一区|99精品热爱视频|亚洲黄色先锋一区

基于改進(jìn)多尺度卷積網(wǎng)絡(luò)的軸承故障診斷研究

  • 打印
  • 收藏
收藏成功


打開(kāi)文本圖片集

中圖分類號(hào):TH133.3 文獻(xiàn)標(biāo)識(shí)碼:A 文章編號(hào):2096-4706(2025)07-0179-07

Abstract: In this paper,Improved Multi-Scale Convolutional Networksbearing fault diagnosis method is proposed to solvethe problemsofConvolutionalNeuralNtworkincomplexevironments,suchassytobedisturbed,difculttoetract rich fault featuresfromfixedreceptivefeldandlowdiagnosisaccuracy.Firstly,theoriginalvibrationsignal ispreproced. Secondly,theconvolutionkerelsofdifrentreceptivefieldsareusedtoextractmulti-salefeaturestoeffectivelyapture diversifedfaultinformation.TrdlytheSelf-AentionMechanismisintroducedtoenablethemodeltodynamicallalculate andadjustthe weight ofeach position inthe feature map,and adaptivelyenhance the keyfault features.Finaly,the fully conected layer isused toclasifytheextracted features toachieveaccurate diagnosis.Theexperimentalresultsshowthatthe diagnosis accuracy of the method on the public dataset reaches about 98 % ,and it shows good anti-noise and generalization ability underdifferent signal-to-noise ratio conditions.

Keywords:Multi-ScaleConvolutionalNetworks;featureextraction;Self-AtentionMechanism;bearing fault diagnosis

0 引言

隨著裝備制造業(yè)的發(fā)展,軸承性能直接影響設(shè)備表現(xiàn)[1]。(剩余10638字)

目錄
monitor