基于改進(jìn)YOL0v8n的輕量化工地堆放木材異常檢測(cè)算法

打開文本圖片集
中圖分類號(hào):TP183:TP391 文獻(xiàn)標(biāo)識(shí)碼:A 文章編號(hào):2096-4706(2025)07-0058-07
Abstract:When the timber materialsare stackedontheconstruction site,theoutdoorenvironment is prone to abnormal problemssuchas moisture deformationand drycrackingonthe surfaceofthe timber.Aimingatthe problems ofpooraccuracy andhighcomputationalcomplexityoftheexisting detectionalgorithmsonthesurfaceof timber materials,alightweightsmall target detection algorithm(YOLO-ESN)basedonYOLOv8nis proposed.Thealgorithm introduces the SpatialandChannel ReconstructionConvolution (SCConv) module and the Normalized WassrsteinDistance (NWD)lossfunction forsmal target detection.Atthesametime,itembeds theEffcientMulti-ScaleAtention(EMA)modulebasedonCross-SpatialLeaminginto thebackbone network toreduce the impact ofoccusionandbackgroundinterference.Theimprovedalgorithmis experimentally verified on the timber defect dataset. Compared with the original algorithm,its is increased by 3 . 6 % ,and the parameter quantity is reduced by 23 . 3 % ,which realizes the real-time and accurate detection of the abnormal situation of stacked timbermaterials.
Keywords: improvedYOLOv8nalgorithm; constructionsite timber anomalydetection; lightweight; smalltargetdetection
0 引言
木材作為生物材料常年暴露在室外,易受人為操作不當(dāng)、蟲蛀等因素影響而受損。(剩余8317字)