特黄三级爱爱视频|国产1区2区强奸|舌L子伦熟妇aV|日韩美腿激情一区|6月丁香综合久久|一级毛片免费试看|在线黄色电影免费|国产主播自拍一区|99精品热爱视频|亚洲黄色先锋一区

基于XGBoost的肥胖水平綜合預(yù)測(cè)與SHAP模型解釋分析

  • 打印
  • 收藏
收藏成功


打開文本圖片集

中圖分類號(hào):TP399 文獻(xiàn)標(biāo)識(shí)碼:A文章編號(hào):2096-4706(2025)07-0040-07

Abstract: This paper aims to use the XGBoost model to predict obesity levels and explain the contribution of various featurestoobesityriskthroughtheSHAPmethd,soastoidentifykeyifuencingfactorsandprovideascientificbasisfor obesity prevention.Modeling isconductedbasedonmultiple featuressuchas familyhistoryofobesity,dietaryhabits,and frequencyofphysicalactivityXGBoostisused topredictobesitylevels,andSHAPvaluesareappliedtoanalyzethempactof eachfeatureonthe modeloutput,toexplainthecontributionofeach feature toobesityclasifcation.Family historyofobesity age,and dietary habitsare keyfactors afectingobesity.SHAPanalysis furtherreveals the specificcontributionsandimpactof thesefactorsonobesityclassification.BycombiningtheeffcientpredictiveabilityofXGBoostandtheexplanatoryanalysisof SHAP,thisresearchnotonlyidentifiesthekeyfeaturesthataffctobesitybutalsoprovidesascientificbasisforpersoalized health management and obesity prevention,demonstrating theapplication potential ofMachine Learming inthe fieldof public health.

Keywords: SHAP; XGBoost; Big Data; obesity level; health management

0 引言

對(duì)肥胖水平進(jìn)行數(shù)據(jù)挖掘,是指通過分析與肥胖相關(guān)的各類數(shù)據(jù),揭示肥胖的成因、發(fā)展趨勢(shì)以及與健康風(fēng)險(xiǎn)之間的關(guān)系,從而為肥胖的預(yù)防、管理和治療提供數(shù)據(jù)支持。(剩余8043字)

目錄
monitor