濃度預(yù)測(cè)模型,從而能夠快速收斂并得到全局最優(yōu)解。首先,通過皮爾遜相關(guān)性分析篩選出與 <img src="/qkimages/xdxk/xdxk202507/xdxk20250709-2-l.jpg" with="41px" style="vertical-align: middle;"> 濃度相關(guān)性較高的污染物指標(biāo)作為輸入變量。其次,利用PSO算法優(yōu)化BP神經(jīng)網(wǎng)絡(luò)的初始權(quán)重和閾值,克服了BP神經(jīng)網(wǎng)絡(luò)易陷入局部最優(yōu)、收斂速度慢的缺點(diǎn)。最后,利用成都市2021年7月至2024年6月的大氣污染物數(shù)據(jù)對(duì)模型進(jìn)行訓(xùn)練和測(cè)試。結(jié)果表明,測(cè)試集的 <img src="/qkimages/xdxk/xdxk202507/xdxk20250709-4-l.jpg" with="19px" style="vertical-align: middle;"> 達(dá)到0.944,測(cè)試集的MAE為4.231,測(cè)試集的RMSE為6.364。與未優(yōu)化的 BP 神經(jīng)網(wǎng)絡(luò)模型相比,PSO-BP模型具有更高的預(yù)測(cè)精度和更快的收斂速度,能夠有效地預(yù)測(cè)成都市次日的 <img src="/qkimages/xdxk/xdxk202507/xdxk20250709-2-l.jpg" with="41px" style="vertical-align: middle;"> (20濃度。-龍?jiān)雌诳W(wǎng)" />

特黄三级爱爱视频|国产1区2区强奸|舌L子伦熟妇aV|日韩美腿激情一区|6月丁香综合久久|一级毛片免费试看|在线黄色电影免费|国产主播自拍一区|99精品热爱视频|亚洲黄色先锋一区

基于PSO算法優(yōu)化BP神經(jīng)網(wǎng)的PM2.5濃度預(yù)測(cè)模型

  • 打印
  • 收藏
收藏成功


打開文本圖片集

關(guān)鍵詞: 濃度;預(yù)測(cè)模型;PSO算法;BP神經(jīng)網(wǎng)絡(luò)

中圖分類號(hào):TP391.4;TP183 文獻(xiàn)標(biāo)識(shí)碼:A 文章編號(hào):2096-4706(2025)07-0047-06

Abstract:Aimingat the problem thatthe traditional BPNeural Network has slowconvergence speedand iseasyto fall into local optimal solution, this paper proposes a concentration prediction model based on Particle Swarm Optimization (PSO)algorithmoptimizedBPNeuralNetwork,whichcanquicklyconvergeandgettheglobal optimalsolution.Firstly,the pollutant indexes with high correlation with concentration are selected as input variables by Pearson correlation analysis. Secondly,thePSOalgorithmisusedtooptimizetheinitialweightsandthresholdsofBPNeuralNetwork,whichovercomesthe shortcomingsofBPNeuralNetwork,suchaseasytofallintolocaloptimumandslowconvergencespeed.Finally,themodel is trained and tested using air pollutant data from July 2O21 to June 2024 in Chengdu.Theresults show that the of the test setis 0.944,theMAEofthetestsetis4.231,andtheRMSEofthetestsetis6.364.ComparedwiththeunoptimizedBPNeural Network model,thePO-BPmodelhashgherpredictionaccuracyandfasterconvergencespeed,andcaneffctivelyprdictthe concentration of the next day in Chengdu.

Keywords: concentration,prediction model,PsO algorithm,BPNeural Network

0 引言

,即細(xì)顆粒物,其尺寸微小且具有強(qiáng)烈的吸附能力,它們?cè)诖髿庵型A魰r(shí)間長,能遠(yuǎn)距離傳輸,并可通過呼吸深入人體肺部和血液[1]。(剩余6936字)

目錄
monitor