特黄三级爱爱视频|国产1区2区强奸|舌L子伦熟妇aV|日韩美腿激情一区|6月丁香综合久久|一级毛片免费试看|在线黄色电影免费|国产主播自拍一区|99精品热爱视频|亚洲黄色先锋一区

復(fù)雜場(chǎng)景下基于改進(jìn)的Y0L0v5-pose的異常行為檢測(cè)研究

  • 打印
  • 收藏
收藏成功


打開文本圖片集

中圖分類號(hào):TP391.4 文獻(xiàn)標(biāo)識(shí)碼:A 文章編號(hào):2096-4706(2025)07-0071-06

Abstract: This paper proposes an abnormal behavior detection algorithm based on the improved YOLOv5-pose in complexscenes.ItusesFPTtoreplacetheFPN+PANmodule,enablingthefeaturemapstoachieve globalandlocalinteraction acrossscales and spaces,and improving the accuracyofjoint point detection.Inthe Neck module,askipconnection structure is employedto efectively fusethe information ofthe input featuresand the multi-scale features output through the network, improvingtheabilitytocapturedetailed informationandenancing theauracyofdetectingoluded jointpoints.Experimental results show that the improved algorithm achieves an average accuracy of 9 9 . 5 % on the CrowdPose dataset,which is 2 . 4 % higher thanthatoftheoriginalmodel.Theimprovedmodelnotonlyhashigherdetectionaccuracybutalsosignificantlyimprovesthe recognition performance of small targets.

Keywords: YOLOv5-pose; behavior recognition; joint point detection; FPT; skip connection

0 引言

在城市人員復(fù)雜、社會(huì)安全風(fēng)險(xiǎn)高的重點(diǎn)場(chǎng)所,極易發(fā)生群體沖突、極端暴力等社會(huì)安全突發(fā)事件,加劇民眾的心理恐慌,嚴(yán)重影響到社會(huì)穩(wěn)定。(剩余8613字)

目錄
monitor