基于改進(jìn)YOL0v8+DeepS0RT的多目標(biāo)車輛跟蹤算法研究
關(guān)鍵詞:車輛目標(biāo)跟蹤;YOLOv8;DeepSORT;Ghost卷積;輕量型;CBAM;損失函數(shù)中圖分類號(hào):TP391.4;TP301.6 文獻(xiàn)標(biāo)識(shí)碼:A 文章編號(hào):2096-4706(2025)07-0052-06
Abstract:Aiming at the issues that vehicle tracking algorithms are highlycomplex and computationally intensive in practical traficscenarios,making it diffcult toapplythem todevices withlimited resources,this paper proposesamultitargetvehicletrackingalgorithmbasedonimproved YOLOv8 + DeepSORT.AlightweightGhostNet ConvolutionalNeural Network is introduced intothe backbone network,and the Conv is replaced with GhostConv.This replacement not only ensures the lightweight natureof themodel but also improves its performance.Subsequently,by introducing the CBAMand integrating it with the Ghost convolution technology,anew GC-C2ffeature fusion module is constructed to further enhance the featureextractionability.Finallyanewlossunction,WIoU,isadoptedtoimprovethmodel'segreionacacyand convergence speed.The detectionresults ofthe improved YOLOv8 modelare usedasthe input ofthe DepSORTalgorithm toachievemulti-targetvehicletracking incomplexsituations.Experimentalresultsdemonstratethaton theKITTItraffic dataset, withoutsacrificing detection accuracy,compared with theoriginal YOLOv8+DeepSORT,the parametercountof GCWYOLO+DeepSORT is reduced by 3 5 . 9 4 % and the computational load is decreased by 2 0 . 2 5 % .This makes it more suitable for deployment on devices with limited resources and endows it with practical value.
KeyWords:vehicle target tracking; YOLOv8; DeepSORT; Ghost convolution; Lightweight type; CBAM; Loss Functic
0 引言
在國(guó)家政策的引導(dǎo)和大力支持下,我國(guó)計(jì)算機(jī)視覺(jué)技術(shù)迎來(lái)了快速發(fā)展的黃金時(shí)期。(剩余8692字)
-
-
- 現(xiàn)代信息科技
- 2025年07期
- 基于SwinTransform...
- 基于全生命周期的基站天線碳足跡...
- 基于時(shí)域插值的小脈寬信號(hào)高精度...
- 直流UPS電池管理系統(tǒng)設(shè)計(jì)...
- 一種ARM平臺(tái)Linux系統(tǒng)下...
- 基于增益標(biāo)定的ToF相機(jī)運(yùn)動(dòng)模...
- 基于集成學(xué)習(xí)的二次協(xié)同數(shù)據(jù)預(yù)測(cè)...
- 基于XGBoost的肥胖水平綜...
- 基于PSO算法優(yōu)化BP神經(jīng)網(wǎng)的...
- 基于改進(jìn)YOL0v8+Deep...
- 基于改進(jìn)YOL0v8n的輕量化...
- 基于客流及周邊環(huán)境特征的軌交站...
- 復(fù)雜場(chǎng)景下基于改進(jìn)的Y0L0v...
- 基于LangChain與Dee...
- 基于神經(jīng)網(wǎng)絡(luò)自適應(yīng)濾波器的中醫(yī)...
- 基于改進(jìn)YOL0v8s的肺結(jié)節(jié)...
- 基于K-means的動(dòng)態(tài)聚類垃...
- 基于SpringBoot+Vu...
- 基于約束型TD3的動(dòng)態(tài)探索噪聲...
- 基于微信小程序的滄州大運(yùn)河文化...
- 基于非平衡數(shù)據(jù)的深度再分片算法...
- 基于醫(yī)院系統(tǒng)與微信小程序?qū)拥?..
- 基于Python的建筑物結(jié)構(gòu)設(shè)...
- 基于情感計(jì)算的消費(fèi)體驗(yàn)數(shù)字化表...
- 基于改進(jìn)CBR算法特征權(quán)重分配...
- 企業(yè)數(shù)字化經(jīng)營(yíng)管理平臺(tái)的研究與...
- 基于FLAC3D的煤巖體礦壓危...
- 基于Chinese-BERT和...
- 基于微信小程序的專業(yè)分流系統(tǒng)開(kāi)...
- 廣州市地表熱環(huán)境空間格局及其驅(qū)...
- 基于聯(lián)盟鏈和CP-ABE的學(xué)生...
- 基于CiteSpace的國(guó)內(nèi)數(shù)...
- 基于改進(jìn)多尺度卷積網(wǎng)絡(luò)的軸承故...
- 基于WinForm的車載數(shù)據(jù)記...
- 基于多源時(shí)空數(shù)據(jù)的人群移動(dòng)可信...