遙感數(shù)據(jù)處理中多源數(shù)據(jù)融合方法研究

打開(kāi)文本圖片集
中圖分類號(hào):P237 文獻(xiàn)標(biāo)志碼:A 文章編號(hào):2095-2945(2025)14-0162-04
1,2,3(1.,西安710001;2.陜西省第三測(cè)繪工程院,西安71001;3.西安航空學(xué)院,西安 710089)
Abstract:Inremotesensing dataprocesing,multi-sourcedata fusion method hasbecomea keytechnologytoimprove the eficiencyandaccuracyof informationextraction.Thispapersystematicalldiscussesthemulti-sourcedatafusionmethodbased onfeaturespaceanddeeplearning,analyzesthediferencebetweenlinearandnonlinearfusionanditsapplicationintheproce offeaturextractionandselection,andfurtherelaboratestheimportanceoffeaturespacedimensionreductiontechnology.Dep learningtechniques,speciallconvolutionalneuralnetworksandself-supervisedlearning,havedemonstratedexcellent performanceinprocessngheterogeneousandmulti-dimensionalremotesensingdata,signficantlyimprovingtheaccuracyand robustnessofdatafusion.Basedonpracticalcases,thispapershowsthespecificefectsofdiferentfusionmethodsonfeature extractionandfusioninmulti-sourcedataprocessng,indicatingthatdeeplearning methodshavebroadapplicationprospectsin the field of remote sensing.
Keywords: remote sensing data; multi-source data fusion; feature space; fusion effect; deep learning
在遙感技術(shù)的不斷進(jìn)步與廣泛應(yīng)用背景下,多源數(shù)據(jù)融合已成為提升數(shù)據(jù)處理精度與豐富信息內(nèi)容的關(guān)鍵手段,遙感數(shù)據(jù)來(lái)源廣泛,涵蓋光學(xué)、雷達(dá)、激光雷達(dá)等多種傳感器,這些數(shù)據(jù)在空間、時(shí)間及光譜分辨率上各具特性。(剩余5629字)