適用于深度學習訓練的配電網(wǎng)故障歷史樣本數(shù)據(jù)生成研究

打開文本圖片集
中圖分類號:TP18 文獻標志碼:A 文章編號:2095-2945(2025)14-0063-0
Abstract:Withthedevelopmentofsmartgridanddeep learning technology,theuseof historicalfaultsamples fortraining hasbecomeapowerful meansoffaultdataprocessingindistributionnetworks.Thisstudyadoptsadynamiciterativestrategy: firstly,thedeeplearnigmodelisusedtoidentifythefaulttypesofthedistributionnetwork,andthekeydataissummarized andextractedfromtheidentificationprocessThen,throughacontinuousiterativeprocess,thehistoricalsampledatageerated each time is fed back into the model. Finally,a system model of 10kV line protection detection test is built in Matlab/Simulink, andasimulationtestexampleisbuiltforverification,andtheexperimentalresultsshowthatthemodelisefectiveandfeasible.
Keywords:distributionnetwork failures;faultdetection;deep leaming;dynamic iteration;historical sampledata
在當今信息化、智能化的時代背景下,配電網(wǎng)的自動化水平和智能化[1-2程度不斷提高,對故障診斷技術提出了更高的要求。(剩余8178字)