YOLOv8算法分類識別機收甘蔗雜質(zhì)的研究

打開文本圖片集
關鍵詞機收甘蔗;YOLOv8;雜質(zhì);分類;識別中圖分類號S225 文獻標識碼A文章編號 0517-6611(2025)08-0200-05doi:10.3969/j.issn.0517-6611.2025.08.041
開放科學(資源服務)標識碼(OSID):
AbstractInvieoftesugarfactoriesrelyentirelyonmanualjudgmentofteimpurityontentinmechanicallyharestedsugarcaehich ishighlysubetiedckssetifsissedpgestoexpeasifatiodcoofimprih callyharvestedsugarcaneeainfocusdbenuildanmageacquisionplatfoanddtaset,selected,aidut,nddsigdhadwareuchasomputersustralameras,ndligsuceseOoritadedtoraindtectatasefoasification,used recall,precision,and average precision mean quantitative evaluation of the detection results,showed that the YOLOv8 algorithm achieved an average accuracy of 7 7 . 4 % in classifying and recognizing machine harvested sugarcane,efectively distinguishingitsdifetoots.solsahillrinfudatiofoubseeeiofipuritotce harvested sugarcane.
KeywordsMachine-harvested sugarcane;YOLOv8;Impurity;Classify;Identify
我國是全球第三大甘蔗生產(chǎn)國[,對于機械化作業(yè)需求很高,其中機械化收獲在多年的發(fā)展中取得了一定進步,但收獲后會混有不同種類雜質(zhì),如蔗梢、蔗葉、泥沙等,而雜質(zhì)含量是影響制糖產(chǎn)糖率和經(jīng)濟效益高低的關鍵因素之一[2]同時會造成糖廠設備使用壽命縮短、生產(chǎn)成本增加以及一級糖料出糖率降低等。(剩余6738字)