特黄三级爱爱视频|国产1区2区强奸|舌L子伦熟妇aV|日韩美腿激情一区|6月丁香综合久久|一级毛片免费试看|在线黄色电影免费|国产主播自拍一区|99精品热爱视频|亚洲黄色先锋一区

基于無人機(jī)多光譜和改進(jìn)BPNN的煙草病毒病檢測(cè)

  • 打印
  • 收藏
收藏成功


打開文本圖片集

中圖分類號(hào):S572;S126 文獻(xiàn)標(biāo)識(shí)碼:A文章編號(hào):1007-5119(2025)03-0098-11

Tobacco Virus Disease Detection Based on UAV Multispectral and Improved BPNN

ZHANG Yangliang12, JIANG Xueyan1, LI Min2, JIANG Houlong3, JIANG Lianqiang4, GUO Leifeng2*,WANG Xinweil

(1.KeyLaboratoryofTobaco PestMonitoring &Integrated Management/Istitute ofTobaccoResearchofCAAS,Qingdao66101,

China;2.AgricuturalInfomationItuteofCeseAcademyofAgriculturalSienes,BeiingO1Chia;3.obaccoLeaf

Company,ChongingBrachf,hongingo,Cina;4.ingshanBrachoficuanobaccoopaniaa 615000, Sichuan, China)

Abstract:Thisstudyaims toidentifytobacovirus diseasebyintegrating UAV-based multispectralremotesensing technologywith animprovedBPneuralnetwork (BPNN).Multispectral imagesof healthyanddiseasedtobacoplants withvaryingdegreesof virus infectionwerecapturedusingtheDJIP4MUAV.Atotalof19 vegetation indiceswerecalculated toconstructfeaturesets for correlationanalysis.K-nearest neighbors (KNN),random forest (RF),supportvectormachine (SVM),traditional BPNN,and improved BPNN were used toperformcomparative testsonbinaryandtermaryclasificationsamples.Theimproved BPNN,with optimizationsinetworktructure,imbalanceatahandling,actiationfunctioneplacing,andotimzerancementchied 89% accuracyand anF1 scoreof O.88 forbinaryclassification, and 79% accuracywith anF1 scoreof O.76 for ternaryclassification-both outperforming traditionalalgorithms.TheseresultsindicatethatUAVmultispectraldatacombinedwithanimprovedBPNNholds applicationpotential forthedetectionof tobaccovirusdisease,providing technical supportforearlywamingand preventionof agricultural diseases.

Keywords: tobacco; virus disease; UAV; multispectral; improved BPNN

煙草病毒病是煙草生產(chǎn)過程中最常見且最具破壞性的病害,常年造成巨大經(jīng)濟(jì)損失[1]。(剩余17473字)

monitor