++</sup> 的大田煙株葉片計數(shù)方法。該方法利用無人機(jī)傾斜攝影獲取大田煙株圖片進(jìn)而生成三維點(diǎn)云,然后利用改進(jìn)的PointNet++算法實(shí)現(xiàn)葉片點(diǎn)云分割,該算法應(yīng)用KAN網(wǎng)絡(luò)代替MLP提高算法學(xué)習(xí)能力,減少訓(xùn)練損失;并提出一種融合DGST網(wǎng)絡(luò)和DBB多元分支塊的DGSTD注意力機(jī)制提升準(zhǔn)確性;此外,引入Varifocalloss解決各類別點(diǎn)云比例不平衡問題;最后采用MeanShift聚類算法實(shí)現(xiàn)葉片點(diǎn)云聚類,對應(yīng)得到葉片數(shù)。結(jié)果表明,該算法點(diǎn)云分割的準(zhǔn)確率為 92.55% ,平均交并比為 76.33% ,較原始模型分別提高2.06、2.81百分點(diǎn);葉片估測精確率為 94.35% ,在三維空間內(nèi)實(shí)現(xiàn)了大田煙株葉片計數(shù)。-龍源期刊網(wǎng)" />

特黄三级爱爱视频|国产1区2区强奸|舌L子伦熟妇aV|日韩美腿激情一区|6月丁香综合久久|一级毛片免费试看|在线黄色电影免费|国产主播自拍一区|99精品热爱视频|亚洲黄色先锋一区

基于三維點(diǎn)云和改進(jìn)PointNet++的大田煙株葉片計數(shù)方法

  • 打印
  • 收藏
收藏成功


打開文本圖片集

中圖分類號:S572;S126 文獻(xiàn)標(biāo)識碼:A文章編號:1007-5119(2025)03-0089-09

Field Tobacco Leaf Counting Method Based on 3D Point Clouds and Improved PointNet++

NAN Dewang1,LI Junying2*,LIANG Hong1, MA Erdeng2, ZHANG Hong2, XIAO Hengshu1 (1.Schoo ofInformationScience&Enginering,Yunnan UniversityKunming 650504,China; 2.YunnanAcademyoTobaco Agricultural Sciences, Kunming 650021, China)

Abstract:The leafcountof tobacco plants isoneof theimportant phenotypic parameters fortobacco leaf yield estimationTo address thechalengesof taditionalmanaltobaccoleafcounting,afieldtobaccoleafcountingmethodintegratingthre-dimensional point cloudsand improved PointNet++was proposed.This method employs UAVobliquephotographyto acquirefeld tobacco plant images and generate three-dimensional point clouds.An improved PoinNnet ++ algorithm is then utilized to perform leaf point cloud segmentation.The proposedalgorithmreplaces the MLPwith KANtoenhance leamingcapacityand minimize training loss.A DGSTD atention mechanism was proposed, which integrated DGST network and DBB multi-branch block to enhance accuracy. Additionallyarfocaloswasicooratdtodsthesibaace intouddstrutionacrosategores.allyte MeanShiftclustering algorithm wasemployed toclustertheleaf point clouds,from which theleafcount was derived.Theresults showed that the accuracy of point cloud segmentation was 92.55% ,and the mean Intersection over Union (mIoU) was 76.33% representing improvementsof06and2.81 percentagepoitsover teorgialmodel,respectively.Teproposedmethodachevesa leaf counting precision of 94.35% , successfully implementing leaf counting of field tobacco plants in three-dimensional space.

Keywords: field tobacco plants; leaf counting; PointNet++; 3D point clouds; UAV oblique photography

煙草是以收獲葉片為目的的特殊經(jīng)濟(jì)作物,葉片數(shù)是衡量煙株生長狀況、預(yù)測產(chǎn)量的重要指標(biāo)[1-2]傳統(tǒng)人工葉片計數(shù)方法效率低、周期長,勞動強(qiáng)度大且成本高,無法滿足現(xiàn)代農(nóng)業(yè)高通量快速獲取葉片數(shù)的需求。(剩余15888字)

monitor