高維數(shù)據(jù)局部貝葉斯網(wǎng)絡結構學習

打開文本圖片集
摘 要: 針對高維數(shù)據(jù)下貝葉斯網(wǎng)絡結構學習精度和效率低的問題,提出一種基于歸一化互信息和近似馬爾可夫毯的特征選擇(feature selection based on normalized mutual information and approximate Markov blanket, FSNMB)算法來獲取目標節(jié)點的馬爾可夫毯(Markov blanket,MB),進一步結合MB和Meek規(guī)則實現(xiàn)基于特征選擇的局部貝葉斯網(wǎng)絡結構(construct local Bayesian network based on feature selection, FSCLBN)算法,提高局部貝葉斯網(wǎng)絡結構學習的精度和效率。(剩余14524字)