6</sup> ,優(yōu)于YOLOv5s、YOLOv8n、YOLOvlOn等常見目標檢測模型。所提模型可顯著提升玉米田間雜草的精準識別能力,可為促進種植業(yè)的智能化和可持續(xù)發(fā)展提供參考。-龍源期刊網(wǎng)" />

特黄三级爱爱视频|国产1区2区强奸|舌L子伦熟妇aV|日韩美腿激情一区|6月丁香综合久久|一级毛片免费试看|在线黄色电影免费|国产主播自拍一区|99精品热爱视频|亚洲黄色先锋一区

基于WAAP-YOLO的玉米伴生雜草檢測模型

  • 打印
  • 收藏
收藏成功


打開文本圖片集

中圖分類號:TP391.41 文獻標識碼:A DOI:10.7535/hbkd.2025yx04004

Corn-associated weed detection model based on WAAP-YOLO

MENG Zhiyong,JIA Yawei, ZHANG Xiuqing, NI Yongjing, ZHANG Ming,WU Qi, WU Chenxi (School of Information Science and Engineering,Hebei University of Science and Technology, Shijiazhuang,HebeiO50ol8,China)

Abstract:Toaddress the challenges of corn-associated weed detection,such as diverse shapes,dense occusion,complex backgrounds and scale variation,animproved object detection model,WAAP-YOLO,was proposed.First,the backbone was improved byreplacing someconvolutions with wavelet poling convolutions,effectively avoiding aliasingartifacts.Second,an agregatedatentionmechanism wasintroduced toconstructtheC2f-AA module,improving the model'sabilitytoextractwed featuresincomplexbackgrounds.Finall,ASF-P2-Netwas proposed toreplace theoriginal neck network,incorporating the P2 detection head through the scale sequence fusion module,reducing model complexityand significantly improving small object detection performance. Experimental results show that the WAAP-YOLO detection algorithm achieves 97.2% mAP @ (2 0.5, 85.8% mAP@0.5:0.95 ,94. 0% Fl score,and a parameter count of 2.1×106 ,outperforming common object detection models such as YOLOv5s,YOLOv8n,and YOLOvlOn.The proposed model can significantly enhance cornfield weed recognitionacuracy,which providessomereferenceforadvancing theintellgent and sustainable developmentof the

agricultural industry.

Keywords:computer neural networks;weed recognition;wavelet pooling;attention mechanism; multi-scale fusio

玉米作為全球三大糧食作物之一,其產(chǎn)量至關重要,而雜草是限制其產(chǎn)量的主要因素之一[1]。(剩余12608字)

monitor