+</sup>. AdaBoost算法的車輛盲區(qū)行人檢測方法。首先利用HOG特征提取算法提取行人特征和車輛特征,然后通過AdaBoost算法對樣本進行分類訓練,從而有效區(qū)分開人體目標與車輛背景區(qū)。實驗結(jié)果表明,所提算法相比于現(xiàn)有的算法有著更高的檢測準確率,有效降低了車輛變道及轉(zhuǎn)彎過程中的盲區(qū)事故風險。-龍源期刊網(wǎng)" />

特黄三级爱爱视频|国产1区2区强奸|舌L子伦熟妇aV|日韩美腿激情一区|6月丁香综合久久|一级毛片免费试看|在线黄色电影免费|国产主播自拍一区|99精品热爱视频|亚洲黄色先锋一区

基于HOG+AdaBoost算法的車輛盲區(qū)行人檢測方法

  • 打印
  • 收藏
收藏成功


打開文本圖片集

關(guān)鍵詞:車輛盲區(qū)檢測;HOG特征提取算法;AdaBoost算法;行人檢測中圖分類號:U472.9 收稿日期:2025-04-18 DOI: 10.19999/j.cnki.1004-0226.2025.08.008

Vehicle Blind Spot Pedestrian Detection System Based on HOG + AdaBoost Algorithm

Meng TiancilGong Baichuan2

1.School of Electronic and Information Enginering,Huaibei Institute of Technology,Huaibei 235ooo,China !.Schoolof Electromechonical Engineering and Architecture,Huaibei Instituteof Technology,Huaibei 235oo,China

Abstract:Aimingatthproblemoffrequentraficaccidentscausedbyvehicleblindspots,thispaperproposesapedestriandetec tion method in vehicle blind spots based on HOG+ AdaBoost algorithm.Firstly,the HOG feature extraction algorithm is used to extract pedestrianfeaturesandvehiclefeatures.AndthenthesamplesaeclasifiedndtraiedbyAdaBostalgorithm.Tusefectivelydistinguishthehumanobjectfromthevehiclebackgroundarea.Theexperimentalrsultsshowthattheproposedalgorithmhashigherdetectionaccuracythantheexistingalgorithms,andeectivelyreducestheriskofblindareaacidentsduringlanechangeandtuing.

Keywords:Vehicleblindspotdetection;HOG featureextractionalgorithm;AdaBoostalgorithm;Pedestriandetection

1前言

隨著汽車普及率的提高,交通事故的發(fā)生率也越來越高。(剩余3906字)

目錄
monitor