基于SURF特征改進(jìn)的空調(diào)標(biāo)簽缺陷檢測(cè)算法
中圖分類(lèi)號(hào):TP317.4 文獻(xiàn)標(biāo)識(shí)碼:A DOI:10.7535/hbkd.2025yx03010
An improved air conditioner label defect detection algorithm based on SURF features
ZHOU Huizi1'2,LIU Yuelin3,LIU Qing4,LI Jianwul
(1.School of Computer Science and Technology,Beijing Institute of Technology,Beijing 10o081,China; 2.Big Data Center,Zhuhai Gree Electric Appliances Company Limited,Zhuhai,Guangdong 519o7o,China; 3.Ara Institute of Canterbury International Enginering College(Zhongxin International College of Engineering), ShenyangJianzhu University,Shenyang,Liaoning1lol68,China; 4.School of Economics and Management,Hebei University of Science and Technology, Shijiazhuang,Hebei O50o18,China)
Abstract:Aiming at thebottleneck that deep learning algorithms are not compatible withdevice detectionand new sample colection,aswellaspoordetectiontimelinessandgeneralizationability,atraditionaltemplatematchingdetectionalgorithm basedonSURFfeatures was proposed.Firstly,SURFalgorithm was usedtoextractfeaturesfrom theimage,andthe product quantization theory was used to construct search tres.The matching points were quickly screned basedon spatial position informationof feature points.Secondly,the homographymatrix and afine transformation matrix wereobtained from the matching points,and the two matrices werecombined to scree the "interior points"forofset calculationand image registration.Finaly,combined withtheideaoflocal defect density measurement,thedefect densitywascalculatedby integratingtheregionalforegroundandbackground weighting method,andthequalificationofthelabelwasdeterminedbythe defectdensity.Atthesametime,forthesceneofsmallcharacterswithfewfeaturesandlocalofset,animproved method wasproposed toavoid misjudgment.The results show that thealgorithm improves the stability and detection acuracyof feature point matching. The accuracy,recall and Fl on the self-built data set are 98.67% , 97.69% and 98.18% , respectively,which arebettr thanthemainstream methods.The practicalapplicationonthedevice meets thereal-time requirements.Thealgorithmcaneffectively improve thestabilityoffeature pointsandthe detectionacuracy,meet the detection timeliness of equipment,and provide technical reference for its practicability.
Keywords:image processing;defect detection;SURF characteristics;image registration;defect density
隨著工業(yè)4.0的浪潮推進(jìn),標(biāo)簽的質(zhì)量已經(jīng)成為衡量企業(yè)生產(chǎn)能力和市場(chǎng)競(jìng)爭(zhēng)力的關(guān)鍵指標(biāo)之一。(剩余13003字)
-
-
- 河北科技大學(xué)學(xué)報(bào)
- 2025年03期
- 基于改進(jìn)PPO算法的混合動(dòng)力汽...
- 基于信息熵的自適應(yīng)多分類(lèi)器交通...
- 融合多種機(jī)制的交通時(shí)序數(shù)據(jù)異常...
- 纖維素基載銀水凝膠對(duì)亞甲基藍(lán)的...
- 石墨相氮化碳光催化抗菌優(yōu)化策略...
- 氯化膽堿基低共熔溶劑拆分秸稈高...
- 膳食多酚對(duì)美拉德反應(yīng)產(chǎn)物化學(xué)及...
- 有機(jī)與非有機(jī)牛奶中揮發(fā)性代謝成...
- 基于PSO-BP神經(jīng)網(wǎng)絡(luò)高速公...
- “數(shù)據(jù)分析與計(jì)算"專(zhuān)...
- 基于SURF特征改進(jìn)的空調(diào)標(biāo)簽...
- 融合知識(shí)圖譜的多行為職位推薦...
- 基于攻防博弈的網(wǎng)絡(luò)系統(tǒng)動(dòng)態(tài)風(fēng)險(xiǎn)...