2</sup> 為0.974,BP模型 R<sup>2</sup> 為0.890,前者更接近于1;與生命周期法結果相比較,PSO-BP比未優(yōu)化的BP與真實值之間偏差更小。劃分的4個維度層和選擇的12個關鍵指標使得在高速公路設計規(guī)劃階段即可預測得到建設期的碳排放,為高速公路的低碳建設提供了參考。-龍源期刊網(wǎng)" />

特黄三级爱爱视频|国产1区2区强奸|舌L子伦熟妇aV|日韩美腿激情一区|6月丁香综合久久|一级毛片免费试看|在线黄色电影免费|国产主播自拍一区|99精品热爱视频|亚洲黄色先锋一区

基于PSO-BP神經(jīng)網(wǎng)絡高速公路建設期碳排放預測方法

  • 打印
  • 收藏
收藏成功


打開文本圖片集

中圖分類號:U415 文獻標識碼:A DOI:10.7535/hbkd.2025yx03009

Carbon emission prediction method for expressway construction period based on PSO-BP neural network

ZHAO Quansheng1,LI Fei1,GUO Feng'ai1,YU Jianyou 2 ,XU Shizhao 3 , HU Yunpeng4,CHU Xiaomeng5

ool of Civil Engineering,Hebei Universityof Science and Technology,Shijiazhuang,Hebei O5ool8,China; 2.Hebei Expressway Han Gang Port Company Limited,Cangzhou,Hebei O6l5oo,China;

3.SchoolofMechanicalEngineering,Hebei UniversityofScienceand Technology,Shijiazhuang,HebeiO5oo18,China; 4.Qinhuangdao Highway Construction and Development Center,Qinhuangdao,Hebei O66o99,China; 5.School of Chemical and Pharmaceutical Engineering,Hebei University of Science and Technology,Shijiazhuang, Hehei .China)

Abstract:To solvetheproblemof inaccuratecarbonemissons predictionduring the highwayconstruction period,amethodof Optimizing theback propagation(BP)neuralnetwork byparticleswarmoptimization(PSO)algorithmwas proposed topredictcarbon emisions.The12keyndicators,includingroutelength,subgradelength,pavementlngth,tunellength,ridgeandculvertlength, interchangelength,excavationvolume,filingvoue,dieselconsumption,cementconsumption,crushedstoneconsumptionadteel consumption,wererefinedfromthefourdimensionsof project length,construction,energyconsumptionandmaterialconsumption usingtheanalytichierarchyprocess(AHP).Thedatafrom36hghwayprojectswereusedasempiricalsamplesformodelrainng,nd a comparative analysis was conducted based on error indicators. The results show that the R2 value of the obtained PSO-BP model is 0.974,while the R2 value of the BP model is0.89o,with the former being closer to1.Compared to the results of life cycle assessment,thePSO-BPmodelhasasmalerdeviationfromtheactualvaluethantheunoptimizedBPmodel.Thefourlayersof the hierarchyandtheselected12keyindicatorsenablethepredictionofcarbonemisionsduringthedesignandplaningstageofhighway construction,providing reference for low-carbon highway construction.

Keywords:otherdisciplines of road engineering;carbon emisson prediction;PSO-BP neural network;modeloptimization; factor analysis

開展碳排放量預測是研究高速公路建設期碳達峰、碳中和的基礎工作,這一工作不僅是制定減排策略的前置步驟,更是評估環(huán)境影響的關鍵工具[1-2]。(剩余13746字)

monitor