基于改進(jìn)PPO算法的混合動(dòng)力汽車能量管理策略

打開文本圖片集
中圖分類號:U469.72 文獻(xiàn)標(biāo)識碼:A DOI:10.7535/hbkd.2025yx03001
Energy management strategy for hybrid electric vehicle based on improved PPO algorithm
MA Chao, SUN Tong,CAO Lei,YANG Kun, HU Wenjing (Collgeof TransportationandVehicle Engineering,Shandong Universityof Technology,Zibo,Shandong 2550oo,China
Abstract:Inorder toimprovetheeconomyof power-split hybrid electric vehicle(HEV),alongitudinal dynamics modelof the entire HEVvehicle was established,and an energy management strategy(EMS)basedonstrategy entropy optimization withanimproved proximalpolicyoptimization(PPO)algorithmwasproposed.Thealgorithmicframework wassimplified by employing an experiencepoling mechanism based on traditional PPO algorithm,andonlyone deep neural network was used forinteractivetrainingandupdating toreducethecomplexityofparametersynchronizationinthepolicynetwork.Inorderto efectively explore theenvironmentand learnmoreeficientstrategies,thestrategyentropywasadded tothelossfunctionto promotetheintellgencetostrikeabalancebetweenexplorationandutilizationandtoavoid prematureconvergenceofstrategies tolocaloptimal solutions.TheresultsshowthattheEMS basedontheimprovedPPOalgorithmwith single-policynetwork maintains thestateof charge(SOC)of the battry more efectivelythantheEMS basedonthedual-strategy network PPO under both UDDS and NEDC driving cycle. Additionally,the equivalent fuel consumption is reduced by 8.5% and 1.4% , respectively,achieving energy-saving efectscomparable to the EMS basedon the dynamic programming (DP)algorithm. The proposed improvedPPOalgorithmcaneffectivelyenhance the fueleconomyof hybridvehiclesand provideareference for the design and development of EMS for hybrid vehicles.
Keywords:vehicleenginering;hybrid electric vehicle;energy managementstrategy;deepreinforcementlearning;proximal policy optimization
汽車保有量的迅速增長,不僅給國家能源安全帶來巨大的挑戰(zhàn),環(huán)境污染問題也日益凸顯[1],而混合動(dòng)力汽車(hybrid electric vehicle,HEV)被認(rèn)為是減排的重要角色。(剩余12888字)