特黄三级爱爱视频|国产1区2区强奸|舌L子伦熟妇aV|日韩美腿激情一区|6月丁香综合久久|一级毛片免费试看|在线黄色电影免费|国产主播自拍一区|99精品热爱视频|亚洲黄色先锋一区

KADR-LLM:基于深度檢索推理的大語言模型輔助檔案開放審核方法

  • 打印
  • 收藏
收藏成功


打開文本圖片集

中圖分類號:TB9 文獻(xiàn)標(biāo)志碼:A文章編號:1674-5124(2025)07-0009-10

Abstract:This paper addresses limitations in traditional archive declassification review systems, including low efficiency, excessive subjectivity,and inadequate semantic analysis.A KADR-LLM-based intelligent auditing framework was developed,integrating Dense Passage Retrieval (DPR) capabilities with Knowledge Augmented Reasoning Process (KARP) mechanisms to establish a three-stage "retrieval-reasoningverification" paradigm. Key innovations include: A dual-channel text preprocessng method optimizing semantic representation through paragraph truncation based on document spatial structures; A rule-driven dynamic reasoning system combining sensitive term matching with retrieval-augmented generation; A keywordguided progressve auditing strategy enabling interpretable decision-making from surface feature extraction to logical chain validation. Evaluations on OParchives datasets showed KADR-LLM achieved 79.98% accuracy in zero-shot conditions and 82.34% in few-shot scenarios, surpassing baseline models by 4.31% while demonstrating superior semantic generalization capability.

Keywords: archival opening review; large language model; dense retrieval; reasoning prompt

0 引言

在數(shù)字時代,檔案開放共享對社會信息化和知識創(chuàng)新意義重大。(剩余15350字)

monitor