移動(dòng)智能推薦情境下網(wǎng)絡(luò)成癮行為扎根研究

打開(kāi)文本圖片集
Grounded Study of Internet Addiction Behavior in the Context of Mobile Intelligent Recommendation
AbstractAI-driven recommendation algorithms have been widely deployedacross mobilesocial media platforms, enablingpersonalized informationdeliverythrough learning fromusers'historical behaviorsand interestpreferences. Theresultingmobile inteligentrecommendationecosystemunderscoresthedisruptiveapplicationsofAIintherecommendation domain.While mobile inteligentrecommendationsbettersatisfyusers'information needs,theyalso exacerbateaddictiveonlinebehaviors.This study employs grounded theory to explore theunderlying mechanisms influencing userinternetaddictionwithinmobileinteligentrecommendationcontexts.First,aninterviewprotocolwasdesigned,nd data werecollected through semi-structured interviews.Three-tiercoding Was thenconducted: during open coding,l32 initialconceptsand33basiccategories wereextracted;throughaxialcoding,lOprincipalcategories wereidentified;and duringselectivecoding,atheoreticalmodelofinternetaddictionmechanismsinmobileinteligentrecommendationscenarios wasconstructed.Tefindingsrevealthatpersonaliteracyehavioralbeliefs,exteralifluences,egativemotions, andreal-worldconditions exertdirectimpactsoninternetaddictionbehaviors.Meanwhile,theinformationqualitysystem quality,andservicequalityofintellgentrecommendations indirectlyinfluencebehavioralbeliefs throughmediatingeffectsof usersatisfaction,therebyaectingaddictivebehaviors.Thisresearch,toacertainextent,elucidates thesocietal impactsofAI'sdisruptiveapplicationsinrecommendationsystems,providing theoreticalreferencesforinterventionsand governance strategies addressing user internet addiction within mobile intelligent recommendation environments.
/wordsmobilesocialmedia;inteligent recommendation;disruptive application;internetaddiction; grounded th
隨著人工智能(ArtificialIntelligence,AI)技術(shù)的快速發(fā)展和移動(dòng)社交媒體的廣泛使用,算法驅(qū)動(dòng)的智能推薦系統(tǒng)已深度嵌入移動(dòng)社交媒體平臺(tái),對(duì)人們獲取信息的方式產(chǎn)生了顛覆性影響[1]。(剩余11704字)