基于改進(jìn)YOLOv8s模型的河蟹幼苗雌雄檢測方法

打開文本圖片集
GenderDetectionMethodforCrabsSeedlingsBasedonEnhancedYOLOv8sModel
LI Xian,MA Ming,HUZhi-gangetal(ScholofMchanicalEnginering,WuhanLightIndustry University,Wuhan,Hubei0496) AbstractInespsetoteproblmofuceardierentiatiobetwenalesndealesuringthsdingsageofiverabfi cientaccuracyinmanalclasificatioofaleandfemaleinvrabsdling.Tisticleproposametdfordetetigtederf rivercrabsedingasedonanimprovedOLO8odel.eiprovementmetodisasflow:fistlyeplacethfourthlayeCfodule inthebackboneetworkwithCfGAM(globalatentionchanism,GAM)module,djust hewightoffatureiforatioandducete lossoffeaturefoatiodingtassidlyplacealdarysfciiheU(edtef sequentialevideceforintersetooveruiov)boundysfuctiotohaethancroxualityduringtepreditoprosd improvetheodel’sneralzatiobilityfiallearestigoriteplatiousaplingtodineadetwokisplacdih CARAFE(contentawarereassemblyoffeatures)upsaplingmetodichivesteodellargereceptivefeldndimproesitsfo ance.The experimental results sow that the accuracy,recall,and average precision of the improved model are98. 4% ,91. 1% ,and 96. 1% , respctivelyhcre3..d2.9prenaeoterthaeigialodel.eulsicatethaslityoflnga chine vision to the clasification of male and female crab seedlings and the effectiveness of the improved method.
Key wordsCrab seedlings;YOLOv8s;WIoU;GAM;CRAFF
近年來,隨著人工智能技術(shù)的不斷進(jìn)步,越來越多的行業(yè)為了追求高質(zhì)量發(fā)展,將傳統(tǒng)技術(shù)與人工智能技術(shù)進(jìn)行結(jié)合[1-2]。(剩余8718字)